
IVL
Departamento de

70910-900. Brasília, ,
E-mail: {gadelb.a, ay ala }©mat. unb. br

Abstract

e 111

'vVe present sorne slight improvements to a semi-decísion for Presburger arithmetic
originally developed Shostak that increase the class of formulas effectively decidable. Fur­
thermore, we shovv how decision algorithms for Presburger arithmetic may be combined vvith
conditional rewrite techniques for automated deduction in algebraic presented by

clauses with an arithmetic parameter. In we show how Knuth-
could be · by eliminating inconsistent and trivial

metic critica! pairs. Fcr a further motivation vve show some and
Subramaniam on how the cover-set method could be searching solutions for
the arithmetic constraints resulting when producing induction schemes.

: A utomated Deduction, Re

1 Intro

Rewriting were to conditionaJ classes
to obtain more elegance and expressiveness than with rewriting.
(and unconditional) re\vrite specifications were extended including parameters which can be solved
by built-in (non-rewriting) algorithms more efficiently than decision methods on pure
rewriting. :vi uch work has been done in the field of rewriting in order to an
combination of rewriting and built-in algorithms. One of the most appropriate built-in theories to
be included as parameter of modular re\nite specifications is Presburger arithmetic (PA), since it
appeaxs as the basis of almost all deductive systems and cannot be manipulated directly by pure
rewriting techniques as shown by [Vor88]. Of course PA is also appropriate because of
the existence of well-known decision algorithms for the theory enlarged with non-interpreted function
and predicate symbols [Sho79].

There are a great variety of studies suggesting how to combine built-in algorithms and revvriting
techniques appropriately. There are approaches considering the general theory of the built-in para­
meter as parameter of rewrite specifications (see [1lor89], [Aya93, Aya97]) which allow an operational
treatment by rewriting, case-analysis and validity check modulo the built-in parameter theory. Other
approaches work with a specific model of the built-in theory giving restrictions and assumptions on
the built-in parameter which a.llow an operational treatment without case-analysis modulo the built-in
parameter m o del (se e [D090], [AB92], [Bec94]).

*Supported by a graduate grant of the Brazilian Nationa.l Research CoWlcil (CNPq).

The first person to
with built-in predicates was
in predicates, equational conditions
rewriting techniques were combined with built-in algorithms in such a way that it is
deduce Horn clauses whose conditions are purely built-in. Pure rewriting is insufficient and it should
be refined with satisfiability check of the built-in conditions (matching modulo the built-in theory)
and case-analysis guided by the built-in conditions. The language of the built-in theory is considered
as a signature over basic sorts and the remaining function symbols the conditional specification
associated with the CTRS range over extended sorts. In this way one guarantees that the whole
specification is a conservative extension of the specification the built-in theory. This restriction
appears to be very but it reasonable manipulation of many important examples because
it occurs often when irnplementing formal specifications, ne'N sorts are from the
concrete ones.

conditions as
assuming that any basic term can be
In a certain sense, this means that the built-in """vi,~HH.HH

Becker

w here the axioms

with

Their notion of

eq uational
criterion

nevv sorts

be done
or m a

w hich it is necessary to

This paper is as m second section we present our im-
to the Shostak semi-decision method; in the third section we illustrate how Knuth-Bendix
of equational with an aríthmetic can be

eliminating and valid critical pairs; in the fourth section we present
showing the improvement of rewrite solving arithmetic constraints which appear

as part of induction schemes; finally, we present conclusions a.nd comment on future work.
Nota.tions consistent with the standard ones in the field of rewriting theory are used. Complete

surveys on rewriting can be found in [AM90], [DJ90], [Klo92] and [Pla93].

2 Improvement of Shostak semi-decision procedure for AP

The Presburger arithmetic (P A) consists of the structure of integer numbers with the addition op­
era.tion and an ordering predicate,, (Z, +, ::;). The theory of the PA is very relevant in the history
of automated theorem proving since it was the first one to be shown decidable using the method
of quantifier elimination [Pre29]. The original Presburger method was further improved by rnany
authors among them Cooper [Coo72] who included algebraic treatment of the formulas including new
predicate symbols such as 1 (aJx abbreviates :3y ay= x, where a is an integer constant). Despite the

existence of full decision algorithms, these methods present an extremely high complexity 0(222n)
[Opp78]. It turns out to be interesting to study tractable semi-decision algorithms. Shostak [Sho79],
presented an algorithm for unquantified formulas of the PA, that uses integer linear programming
(I LP), that is fairly more efficient than decision algorithms. It has been implemented in LisP 1 and
improved in arder to make a greater class of formulas decidable. The algorithm transforms the neg­
ation of a formula F in its disjunctive normal form G 1 V G 2 V ... V Gn, that corresponds to a set
of I LP problems. F is valid if and only if none of the conjunctions of inequations. Gi, has integer
solutions. The semi-decidability of the algorithm is dueto the method used for solving the I LP prob­
lems: Bledsoe's SUP-INF method. This method determines, for a given system of inequations, Gi,
the maximum and mínimum values that its variables ma.y assume, one at a time. If for sorne variable
the corresponding interval contains no integers, then it is concluded that the system has no integer
solutions. Shostak propases sequential application of Bledsoe's method to determine the respective
intervals for each variable in the system. When an interval of possible solutions for a variable is found,
a real val u e (integer if possible) is selected randomly. The system is modified replacing this variable
with the selected value. The new system is used to set new intervals and values for all the variables
in the original system recursively. If the first interval has no integers or if sorne of the intervals of
solutions subsequently calculated is empty then the validity of the original formula is proved. If we
get, after the recursive computation, a set of integer values for the variables of the problem, the
invalidity of the original formula can be concluded with the set found as a counterexample. Shostak
affirms that incompleteness of his I LP method rarely arise in practice, but we verified that sorne
very simple formulas of frequent use in decision processes are not decidable by his algorithm. Take
for example the valid PA formula (x < 1) V (x > 5) V (x > L5y) V (15y > 2x). The algorithm treats
the I LP problem related to the negation of the formula, (1 ::; x 1\ x ::; 5/\ x ::; 15y 1\ 15y ::; 2x), in the
following way: the interval of solutions found for the variable x is [1, 5]; a random value is selected for
x. for exam ple x = 1, the modified formula is 1 ::; 15y 1\ 15y ::; 2 w hich determines the interval [{5 , 125]

for y. Despite having no integer solution for y we may not deny the existence of integer solutions
due to the random selection made for x, consequently neither validity nor invalidity of the original
formula can be concluded by the algorithm. A small improvement that can be done is to include
sequential steps befare the recursive computation of intervals determining independently intervals for
each variable applying the SUP-INF method. The decision process for the previous formula follows.
The interval [1, 5] is computed for x and then, without random selection for x, the .interval Us, ~~] is
computed for y2 . Since there are no integer values possible for y (without the constraints on x) the
validity of the formula is concluded.

1 Available in http://www.mat.unb.br/"' gadelha. 601
2 Among the admissible values for x, the minimum and maximum values that y can assume are /5 and f%.

Also, simple valid formulas should be algebraically treated, in order to reach their proofs, In
particular, validity of formulas of the form: e1x1 +, .. + CnXn #- e, where e and the ei's are integer
constants, the x;'s variables and e and a = gcd{ e1, ... , en} are relative primes, cannot be directly
detected by Shostak's algorithm. Consider, for example, the valid PA formula 3x + 12y #- 7. The
I LP problem corresponding to its negation is 3x + 12y = 7. Applying non-sequentially Bledsoe's
method, it is possible to determine the interval (-oo, +oo) for both variables x and y. As these
intervals contain integers, validity of the original formula cannot be proved and it can be presented a
real counterexample. The solution suggested for these kind of formulas is to make first the algebraic
transformation e1x1 + ... + CnXn = az -7 az #- e, wh,ere a = ged{ e1 , ... , en}· Continuing wíth the
exam ple above, one should consider the formula x + 4y = z -r 3z #- 7, w hose negation corresponds
to the I LP problem x + 4y = z 1\ 3z = 7. Observe that the interval for z is [t, t], which does not
include integers. In this way the validity of the original formula can be proved.

The sequential steps and the algebraic transformations suggested increase the class of formulas
effectively decidable by the algorithm originally proposed by Shostak. The improved algorithm is
still a semi-decision algorithm, but it will be very useful in practice, since decision algorithms for
PA have super-exponential complexity [Opp78]. An immediate application of decision algorithms for
P A is their combination with methods for (inducti<1e) theorem pro.ving based on rewriting techniques
in theories that are specified by rewrite rules including arithmetic parameters [Aya95]. Shostak's
semi-decision algorithm appears to be appropriate for its combination with rewriting based deduction
rnethods since it allows a treatrnent of unquantified PA formulas enlarged with predicate and function
symbols making immediate implementations of matching and unification algorithms modulo the
in the sense mentioned in [D.J90]. This is essential for deduction in rewrite modular specifications
with arithmetic parameters. Our improvements of Shostak algorithm can be consulted in [GA96].

3 Coinpletion of S

The unquantified PA is an excellent example of a theory conditional equational modular
specifications implemented rewriting techniques, because arithmetic lies in the very basis of almost
all formal systems of reasoning because the unquantified PA cannot be easily covered by rewriting
systems as shown by [Vor88]. He proved that the unquantified theory of cannot be
axiomatized by a canonical or convergent context-free (conditional or unconditional) rewriting system,
finite or infinite. By context-free it is meant separation between the logical and non-logical part of
the system; That means that every context-free reduction rela/cion includes a canonical sub-relation
for the boolean algebra (for example the one proposed Hsiang [Hsi85]) and boolean connectives
are prohibited in the left-hand sides of non-logical rules (in our case the rules for defining

Here we point out how decision algorithms could be applied during the completion process
of conditional equational specifications. \Ne suppose familiarity with notions of conditional rewriting
such as conditional critica! pairs and the conditional completion process (see for example [Siv89] and
[Gan91]).

Example 3.1 Consider the following CTRS specifying the predicate divides on natural numbers
presented also by rewrite rules. The equational specification that deal with the arithmetic includes
the constq,nt zero, O, the successor constructor, S, addition, +, (which is specified asan associative
commutative function symbol) and ordering <. Obviously the in tended semantics of the

predicate divides , y) is "x divides y".

l. x+O-+.T
2. x+S(y)-+S(.t:+y)
3. O<S(x)-+ true
4c. x < O --+ false

5. S(x)<S(y)->x<y
6. divides(u. O) --+ true
7. divides(u,v)-+ false if((v<u) and(vf:O))
8. divides (u, <L + L') --+ divides (u, v)

Consider the three critica! pairs generated during conditional completion of the CTRS that result
from overlapping rules 8 with 7, 8 with 1 and 2 with 8 respectively (this can be done with RRL):

divides(u, v) = false if (u+ v <u) and (u+ v f: O)
divides(u, u)= true
divides(tL, S(u+ y))= divides(u. S(y))

Knuth-Bendix conditional completion concludes generating a CTRS "equivalent" to the original
one, which includes the three previous critica! pairs oriented from left to right. However, if one
works with a built-in parameter for by restricted to non-negative integers, which can be made
operative with our decision algorithm for by restricting al! variables to be non-negative. the first
critica! pair could be eliminated because of P A-inconsistency its premise, and the second one too,
because it semantically subsumes (w.ct. PA) rules six and eight; in fact, observe that divides(u, u)
is equal to divides(u, u+O) modulo Remember that our decision algorithm for the PA works for
formulas with non-interpreted function and predica te symbols. It allows to verify that divides(u, u)
and divides(u, u+ O) are equivalent, without interpreting the predicate divides. <>

The modification of the conditional completion method is described by means of inference rules as
usually done. New deletion and simplification inference rules should be added to the set of inference
rules for the conditional completion process.

(Eu{s=t ij SC/\P},R) 'f P.A '--- p
(E,R) ' 1 1 =? 8 = t; Deletion by PA-validity

(Eu{s=t if SC/\P},R) if P is PA-inconsistent: Deletion by P.A-inconsistence
(E,R)

(Eu{s=t if SC/\P},R) if s :::::pA s' and s 1 -+R u S'implification modulo P.A
(E u{ u=t ij SC 1\P},R) '

Table 1: Deletion and simplification inference rules of the conditional completion process

Here, S = t if se 1\ p stands for a conditional equation, where se is its standard condition
(that is, a conjuntion of non-arithmetic equations) and P its arithmetic condition. At any stage of
completion there is a set E¡ of conditional equations anda set R¡, of conditional rewrite rules. Initially
completion starts with an input set of conditional equations and no rules. A simple completion step
may be viewed as applying an inference rule to transform the current pair (E¡, into an "equivalent"
pair (Ei+l,Ri+l)· This is denoted by (Ei,Ri) f- (Ei+l,R,+l)·

The deletion by P .A-validity inference rule is applied by checking, the formula P =? s = t

with the decision procedure for P A. The deletion by P A-inconsistence inference rule applies when
inconsistence of the arithmetic condition is checked with the decision procedure. Application of the

603

simplification modulo inference rule is guided by left-hand sides of the current set of rules,
in each of the completion process, that is it is a subterm at some

position rr of S such that a rule in l -t T íf e in R lS a substitution (J from
l into sJ7T (Le., ~ la = sJ7T) and l -t r if applies under substitution a and s[ra]7Tu. For a
finite set of rules R and a term s it ís decidable if there is a left-hand side l a rule in R and a
subterm of s for which there exists a PA-matching substitution. This is in general for theories
with decidable set of unquantified existential-universal formulas [Aya97]. i.e. sentences of the form
:l:r:1 .. . 3xn lfYl· .. Vym<P(x1, . 00, Xn, Yl, 00., Y m) is a quantifier-free formula.

Example 3.2 Continuation of example 3. l. The first critica! pair (u, v) = if (u+ v <
u) and (u+ v # O) is deleted application of the second inference beca use u+ v # O 1\ u+ v <
u 1\ u 2:: O 1\ v 2:: O is P A-inconsistent. u 2:: O 1\ v 2:: O is added to the original condition sií1ce the
intended parameter is restricted to the naturals. The critica! (u, = true is simplified
by the third inference rule to divides(u, O) = true observe that the
left- hand si de of the eight rule, divides (u, u + v), substitution
a= {v 1---1- 0}. Subsec¡uently, O)= true
with the non-presented inference rules of the conditional process. O

course, inclusion inference rules in usual
process preserves soundness, since of the additional rules is sound. Inference rules for simpli­
fying standard the and

conditions, as is done
for

described here are based on the of the completion detailed in
1] for standard here is to illustrate the

m the case of our treatrnent of
parameters by rewrite rules. H must be
to a completion algorithm, that is based
which present slight changes with

of arithemtical
that the inference rules previously described give rise

for standard a.nd

Of course, since we propase para-
meter, only in the case that will be
effectively eliminated, speeding up the process, on the com-
pletion process are independent of the (semi-)decísion method used for the arithmetic parameteL

4 Rewrite o

Developing automated procedures for generating induction is interesting since many theor­
ems may not be usual induction over natural numbers. mam behind these
methods is to use the structure of function definitions in the rewrite specifications to generate appro­
priate induction schemes. VVe select the cover-set [ZKK88] for generating induction schemes
for functions defined by conditional rewriting systems and illustrate which role arithmetic decision
algorithms play, following suggestions originally presented by Kapur and Subramaniam in [KS96b].

a defining a the cover-set
generates an inductionscheme for based on the structure of definition
of Jo The cover-set method is implemented in

Example 4,1 Consider the following rewriting system defining the greatest common divisoL

l. gcd(x, O) --7 x 3. gcd(;r, x +y) --7 gcd(x, y)
20 gcd(O,x)--7-x 4. gcd(x+y,x)->gcd(y,x)

The usual induction scheme for proving the commutativity of the gcd consists of an induction basis
gcd(O, y) = gcd(y. O) andan induction step gcd(x, y)= gcd(y, x) =? gcd(x + 1, y) = gcd(y, x + 1).
The basis of the scheme can be proved by reductions with the first and second rules. But observe
that the rewriting system for the gcd includes no rule for simplifying the conclusion of the induction
step in arder to apply the induction hypothesis. Instead, the cover-set method uses the structure of
the definition of the gcd to generate the scheme: gcd(O, y) = gcd(y, O) and gcd(x, y) = gcd(y, =?

, x +y) = gcd(x +y, x) 1 which allows to prove the conjecture 1 sin ce gcd(x, x +y) = gcd(:r +y, .r)
reduces to the induction hypothesis by applying the third and fourth rules. O

.LJ<:::u.uu,H .. I'.H 4.1 [KS96b} Let R be a noetherian CTRS u·ith r·ules of the form l --7 1' if e satis­

fying the usual restriction on variables: (7') U (e) C Vars (l). Furthermore suppose

that R specifies a set of function symóols F and that f E F is an n-ary function symbol. The

symbol definition D ¡ for f E F is the set of in R whose left-hand

side have main symbol f. The cover-set e¡ for the j11nction symbol f with function definition
D ¡, is the set of 3-tuples derived from rewrite rules l --7 r if e E D ¡ with the following shape.·

((arguments off in l), { list of argurnents of ea eh occurrence off in r}, e¡.

Observe that the second com ponent of a cover-set triple is of the form { (si, ... , s~), . o o , (si, ... , s~)},
where each tuple corresponds to arguments of occurrences off at r. An induction scherne for a
conjecture e about f (tl' o •• 'tn) occurring at position 7T in e consists of a finite set of induction cases of
the form ((a e, con de, replc), { ... , (()i, condi 1 repli) 1 ••• }) in w hich the first com ponent is the induction
conclusion and the second one is the ind11ction hypothesis. Each induction scheme is obtained from
a cover-set triple in e¡ of the form ((s 1 , ... 1 sn), { ... , , tn), ... } , e) by applying the following
procedure.

P:rocedu:re 4.1 [KS96b] Given a conjecture e about an n-ary function symbol f occurring at position
7T in e as the term t = f(t 1 , ... , tn) and let D ¡ be the function definition off w.r.t. a CTRS R. This
algorithm computes an induction scheme.

Begin
Compute the cover-set e¡ from D ¡.

For ea eh triple e = ((s1, ... , sn), {(si, ... , s~), ... , (si, s~) }, e) in e¡ do

End

Let a be the mgu of t and s = f(sl, ... , sn):
the induction conclusion is (ac, conde, replc) where uc is a restricted to variables
occurring in t, conde= eu and replc = {7T <- sa};

Let u i be the most general unifier for t and s1 = f (si, ... , s~) for so me 1 :S i :S k:
the i-th induction hypothesis is: (B¡, condi, repli) where {)¡ is a¡ restricted to
variables occurring in t, cond¡ = eui and repl¡ = {7T t- s1u¡};

Example 4.2 We now sho\v in detail the previous proof of e =: gcd(m, n) = gcd(n, m). e 9 cd =

{((x 1 0)),{} 1 {}),((0,x),{},{}),((x,x+y),{(x,y)},{})},((x+y 1 x),{(y,x)},{})}o The induction

scheme for the term gcd(m, n) occurring at position 1 in e is generated by computing the most
general unifiers between gcd(m, n) and the corresponding triples of the cover-set Cgcd obtaining:

{(({m f-t x, n f-t 0}, {}, {1 ~ gcd(x, 0)}), {}),
(({m f-t O, n f-t x}, {}, {1 ~ gcd(O, x)}), {}),
(({m f-t x, n f-t x + y}, {}, { 1 ~ g cd (x, x + y)}), { ({m f-t x, n f-t y}, {}, { 1 ~ g cd (x, y)})}),
(({m f-t x +y, n f-t x}, {}, {1 ~ gcd(x +y, x)}), {({m f-t y, n f-t x}, {}, {1 ~ gcd(y, x)})})}

The proof of e following the previous inductive scheme consists of two induction bases corres­
ponding to the first two components of the induction scheme: gcd(O, x) = gcd(x, O) and gcd(x, O)=
gcd(O, x) which reduce to true by rules 1 and 2, and two induction steps corresponding to the last two
components of the induction scheme: induction hypothesis 1: gcd(x, y)= gcd(y, x) with conclusion
1: gcd(x, x +y)= gcd(x +y, x) and induction hypothesis 2: gcd(y, x) = gcd(x, y) with conclusion 2:
gcd(x +y, x) = gcd(x, x +y). Both conclusions of the induction steps reduce to the corresponding
induction hypothesis by rules 3 and 4. <>

Generation of induction schemes depends on successful syntactic unification. But working with
modular rewrite specifications with arithmetic parameters it is necessary to perform semantic unifica­
tion modulo the arithmetic parameter. In [KS96b] it is suggested the use of decision algorithms for P A
to accomplish PA-unification in place of syntactic unification. The following example from [KS96b]
illustrates the application of arithmetic decision algorithms when generating induction schemes by the
cover-set method.

Example 4.3 Consider rules 6, 7 and 8 of example 3.1 specifying divides over the natural numbers
presented as parameter of the whole specification. The cover-set of divides is used to prove the
conjecture divides(2, x) = not(divides(2, S(x))), generating the following induction scheme (for the
first occurrence of divides in the conjecture):

{ (({x f-t 0}, {}, {1 ~ divides(2, 0)}), {}),
(({x f-t v}, {v < 2 Av=/= 0}, {1 ~ divides(2, v)}), {}),
(({x f-t 2 + v}, {}, {1 ~ divides(2, 2+ v)}), {({x f-t v}, {}, {1 ~ divides(2, v)})}) }

The induction basis given for this scheme consists of two cases. Firstly, it should be proved that
divides(2, O) = not(divides(2, S(O))), which can be done by reduction with rules 6 and 7. Ob­
serve that rule 7 applies since its condition S(O) < 2 A S(O) =/= O (which is checked with the de­
cision algorithm for PA restricting all variables to be non-negative) is true. Secondly, it should
be proved that divides(2, v) = not(divides(2, S(v))) if v < 2 Av =/= O. It reduces to false =
not(divides (2, S (v))) ij v < 2 A v =/= O applying rule 7. Observe that the right-hand si de of the equal­
ity cannot be reduced, but using the decision algorithm for PA one can find a solution for v. Thus it
should be proved that false = not(divides(2, S(1))), which reduces to false = not(true) applying
rules 8 and 6. Note that this is done by finding PA-matchings using the decision algorithm. The induc­
tion step consists of proving the conclusion hypothesis divides(2, v + 2) = not(divides(2, S (v + 2)))
under the induction hypothesis divides(2, v) = not(divides(2, S(v))). The conclusion reduces to
divides(2, v) = not(divides(2, S(v+2))) applying rule 8, which matches with the left-hand side ofthe
equality modulo PA. In arder to reduce divides(2,S(v+ 2)) it is also necessary a PA-matching to
apply rule 8, i.e., to detect that S(v+2) = 2+S(v). In this way one obtains the induction hypothesis,
completing the proof. <>

Searching for PA-unifiers, PA-matchings and solving arithmetic formulas with the decision al­
gorithm for the unquantified PA enlarged with non-interpreted function and predicate symbols make
extremely inefficient the generation of inductive proofs, however this is necessary and should be done
in a rational manner, maintaining the efficiency of rewriting methods as suggested in [KS96b].
606.

have presented an improved version with enlarged function
te symbols developed its and

suitability as complementary deduction mechanism when techniques are applied
in m~odular conditional rewrite specifications with arithmetic parameters. The main contribution of
this paper is the improvement of Knuth-Bendix conditional completion process eliminating critica!
pairs. Inconsistent and trivial critica! pairs, generated during conditional completion, are checked
by detecting inconsistency of their arithmetic conditions and deciding their valídity,

we illustrate applications of arithmetic decision for proving inductive theor-
ems by rewriting techniques when generating induction schemes the cover-set method. Combining
the decision algorithm for with conditional completion and with inductive deduction rewntmg
makes rewriting very expensive, because of the high complexity of decision algorithms for arithmetic.
In decísion algorithms for arithmetic should be applied in order to search PA-unifiers and
matchings, to give arithmetic solutions and to check validity and invalidity. This slows rewriting
deduction considerably. As done in our examples, decision arithmetic algorithms should be applied
in a rational manner in order to vviden the scope of the deduction mechanisms and
to maintain the efficiency. Kapur and Subramaniam [KS96b] have presented in detail how decision
algorithms for P A can be judiciously combined 'NÍth rewrite- based induction heuristics such :::'" c:le
cover-set method and generalization. With respect to the completion process, in [Aya93] a condi-

procedure for conditional lY\Yrite specifica.tions with general built-in parameters is
presented, which can be adapted to arithmetic parameters as suggested in thís work.

One of the most interesting potential applications of built-in decision algorithms for in re>vrite-
based deduction provers is the generation of intermediate lemmas necessary to conclude proofs of a
given (inductive) conjecture. In [KS96a], an approach for speculating about intermediate lemmas is
presented, whose scope can be enlarged by considerations over arithmetic parameters.

References

[AB92] J. Avenhaus and K. Becker. Conditional rewriting modulo a built-in algebra. SEKI-Report SR-
92-11, Fachbereich Informatik, Universitat Kaiserslautern, Postfach 3049, D-67653 Kaiserslautem
(Germany), 1992.

[AM90] J. Avenhaus and K. Madlener. Term Rewriting and Equational Reasoning. In R. B. Banerji, editor,
Formal Techniques in Artificial Intelligence, chapter 1, pages 1-43. Elsevier Science Publishers B.
V. (North-Holland), 1990.

[Aya93] Ivi. Ayala. Expressiveness of Conditional Equational Systems with Built-in Predicates. PhD thesis,
Universitat Kaiserslautern, Kaiserslautern (Germany), December 1993.

[Aya95] M. Ayala. A Deductive Calculus for Conditional Equational Systems with Built-in Predicates as
Premises - Extended Abstract -. In XV International Conference of the Chilean Computer
Science Society, Arica, Chile, pages 25-36, November 1995.

[Aya97] I\il. Aya! a. A Decision Procedure for Conditional Rewriting Systems with Built-in Predi cates. In
Anazs XXIV Seminário Integrado de Software e Hardware. Brasília, Brazil, pages 387-398, August
1997.

[Bec94] K. Becker. Rewrite Operationalization of Clausal Specifications with Predefined Structures PhD
thesis, U niversitat Kaiserslautern, Kaiserslautern (Germany), April 1994.

[Coo72] D. C. Cooper. Theorem Proving in Arithmetic wi.thout Multiplication. Machine Intelligence. 7:91-
99. 1972. 607

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van editor, Handbook of
Theoretical volume 2, chapter 6, pages 244-320. Elsevier Science Publishers B.
V. (N.orth-Holland), 1990.

[D090] l\L Dershowitz and M. Okada. A Rationale for Conditional Equational Programming. Theoretical
Computer 75:111-138, 1990.

[GA96] L. M. R Gadelha and M. Ayala. Aplica<;:ao de Métodos de Programa<;:ao Linear Inteira para Decisao
na Teoria da Aritmética de Presburger. In Anáis do XIX Congresso Nacional de Matemática
Aplicada e Goiánia, Brazil, September, 1996, pages 400-401, 1996. Extended

m a t. unb. br jrvgadelha. In Portuguese.

[Gan91] H. Ganzinger A Completion Procedure for Conditional
11:.51-81, 1991.

[Hsi85] J. Refutational Theorem Proving Term-Rewriting
25(2):255-300, 1985.

Jourrwl of Symbolic

[Klo92] J. Klop. Le"·m Abrarnski, D. NI. and T S. E.
editors, Hcmdbook of vol ume 2, chapter l, pages 1-116. Oxford Science

1992.

[KS96a] D. and M. Subramaniam. Lernma Induction. In M. A. McRobbie
Proc. the 13th

J\Tew

[KS96b] D. and iVL Subramaniam. New Uses of Linear Arithmetic in Automated Theorem

[Opp78]

by Induction. Journal Autornated 16(1/2), 1996.

D. and H. Zhang. An overview of Rewrite Rule
Frac. Third Int. and
LNCS. Springer, April 1989.

D. Plaisted. Equational

Bound on the
16:323-332, 1978.

and J. A. Robinson, editors, Handbook of
Oxford 1993.

volume 355 of

oÍ Presburger Arithmetic. Joumal

[Pre29] M. Presburger. die der Arithmetik ganzer Zahlen.
in welchem die Addition als Kongres
slowianskich, pages 92-101,

[Sho79] R. K Shostak. A Practica! Decision Procedure for Arithmetic with Function
the A ssociation Computing 26(2) :351-360, 1979.

[Siv89] G. Sivakuma:r. and in Conditional
of Illinois at Urbana-Champaign, 1989.

Theories. PhD

Jounwl of

[Vor88] S. G. Vorobyov. On the Arithmetic Inexpressiveness of Term Rewriting In Third S'ymp.
on Logics in pages 212-217, .July 1988.

Conditional rewrite rule and Induction. In
Pmc. Third Int. on

volume 355 of LNCS, pages 492-512.

H. Zhang, D. , and M. S. Krishnamoorthy. A Mechanizable Induction Principie for Equational
In Pmc. of the gth Int. on Automated Dedvction CADE-9 , volume 310

of LNCS, pages 250-265. Springer, 1988.

